
metric-farmer Documentation

team useblocks

Aug 27, 2019

Contents:

1 Features 3

2 Workflow 5

3 Quick start 7
3.1 Installation . 7
3.2 First measurements . 7
3.3 Playing with targets . 7
3.4 Knowing what is possible . 8
3.5 Own metrics . 8

4 Motivation 9
4.1 Installation . 9
4.2 Cli . 10
4.3 Metrics . 11
4.4 Sources . 13
4.5 Targets . 19
4.6 Settings . 23
4.7 Extensions . 24
4.8 Helpers . 26
4.9 Snippets . 28
4.10 Changelog . 31

i

ii

metric-farmer Documentation

Cares about your project metrics

Metric-Farmer is a Python based command line application to collect and store metrics from different sources to
different targets.

It is designed to easily create and maintain complex metric measurements and to painless integrate its functions into
continuous integration systems (CI/CD) or local task executions (cron jobs).

The configuration is completely done by JSON-based farm-files in a project folder called .farmer. And no devel-
opment skills are needed to use Metric-Farmer.

Developers can easily create own Metric-Farmer extensions to provide custom solutions for sources and targets. For
instance to measure a company-internal service.

Contents: 1

metric-farmer Documentation

2 Contents:

CHAPTER 1

Features

Metric-Farmer is capable to collect metrics from following Sources:

• static values

• random values

• file count

• REST requests (E.g. to measure JIRA or GitHub)

And sends the results to the following Targets:

• print output (text or json)

• file output (text or json)

• database output (sqlite)

3

metric-farmer Documentation

4 Chapter 1. Features

CHAPTER 2

Workflow

5

metric-farmer Documentation

6 Chapter 2. Workflow

CHAPTER 3

Quick start

3.1 Installation

You need to have an installed Python 3.5 or above environment.

Then install Metric-Farmer by executing pip install metricfarmer. A working internet connection is
needed!

3.2 First measurements

Execute metricfarmer by following command on your command prompt:

metricfarmer

You will see that extensions and configurations got loaded, but no metrics have been measured. That’s because you
haven’t defined them yet.

Luckily Metric-Farmer comes with some metric examples, which can be used by asking for all metrics with the tag
mf_examples.

So simply execute:

metricfarmer --tags mf_examples print

print is a predefined target and prints out the results of all measured metrics.

3.3 Playing with targets

Targets define what shall happen with the measured metric results.

A very basic target is the print target. Other predefined targets are print_json, file_text and file_json.

7

metric-farmer Documentation

You are free to combine them during your call:

metricfarmer -t mf_examples print file_json

-t is an abbreviation of --tags and file_json will print the results in a file called metric_results.json
on your current working directory.

Take a look into Targets to know how to define easily own, custom targets for your special use cases.

3.4 Knowing what is possible

To get a list of all available metrics, tags, sources, targets and more, simply execute:

metricfarmer --list

3.5 Own metrics

Metric-Farmer is controlled completely by file-based configurations. Therefore it looks for .farm files at the follow-
ing locations:

1. Metric-Farmer installation folder (for basic and example configs)

2. .farmer folder in user/home directory (e.g. ~/.farmer)

3. .farmer folder in current working directory (normally your project root)

Metric-Farmer reads in all found .farm-files and combines them to a single configuration object.

Later read configuration parameters overrides previous read configurations. So a project-configuration overrides al-
ways configurations coming from the user/home folder.

For a simple example, execute the following steps:

1. Create a folder .farmer on your project root folder

2. Create a file inside .farmer called my_metrics.farm

3. Add the following content to the file:

{
"metrics": {

"my_metric": {
"source": {

"type": "random",
}

}
}

}

4. On your project root level execute metricfarmer print.

Congratulations, you have created and measured your first own metric. As we have used the predefined random
source-type, new measurements should provide random numbers as result.

Metric-Farmer provides the following predefined source types: static, random and file_count

Take a look into Sources to get details about them or to get information about how to define your own source types for
your special needs.

8 Chapter 3. Quick start

CHAPTER 4

Motivation

Metric-Farmer is based on the needs of a software development team inside a german automotive company.

The project team was searching for a small and practical way of measuring and analysing metrics related to the ISO
26262 standard for safety critical software.

Metric-Farmer is part of a software bundle, which was designed to support the development of ISO 26262 compliant
software. Other tools are: sphinx-needs, sphinx-test-reports and tox-envreport.

4.1 Installation

You need a working Python installation with version 3.5 and above.

Please visit python.org , if Python needs to be installed.

4.1.1 Using pip

Using pip is the best way to install a package in Python.

Just open a terminal/command prompt and execute the following command:

pip install metricfarmer

4.1.2 Using sources

If you want to have the latest, not yet released version of Metric-Farmer, you must grab the source code and install it
via setuptools. To do so, just follow the following instructions:

git clone https://github.com/useblocks/metricfarmer
python setup.py install

9

https://en.wikipedia.org/wiki/ISO_26262
https://en.wikipedia.org/wiki/ISO_26262
https://en.wikipedia.org/wiki/ISO_26262
https://sphinxcontrib-needs.readthedocs.io/en/latest/
https://sphinx-test-reports.readthedocs.io/en/latest/
https://tox-envreport.readthedocs.io/en/latest/
https://python.org

metric-farmer Documentation

4.2 Cli

This pages describes the command line interface (cli) of Metric-Farmer and its options and arguments.

• Targets argument

• Options

– farmer

– metrics

– tags

– list

– help

For a quick help, you can execute:

metricfarmer --help

As output you will get:

Usage: metricfarmer [OPTIONS] [TARGETS]...

Measure metrics and execute TARGETS

Options:
-f, --farmer TEXT Only uses the given farm folder
-m, --metrics TEXT Filter metrics for specific name
-t, --tags TEXT Filter metrics for tags
--list Show configuration information only
--help Show this message and exit.

4.2.1 Targets argument

Set one or multiple TARGETS to get the wished result handling after measurement.

Example:

metricfarmer print file_json

You also can set no TARGETS argument, if you only want the measurement to be executed:

metricfarmer

4.2.2 Options

farmer

Use -f or --farmer to define a single folder, which contains your farm files.

All other locations will not be loaded.

10 Chapter 4. Motivation

metric-farmer Documentation

So predefined farm-files from Metric-Farmer, from user/home directory and from the current working directory will
be ignored.

Example:

metricfarmer --farmer /temp/farmer_folder/ print

metrics

Use -f or --metrics to define a comma separated list of metric names, which shall get measured. All other metrics
will be ignored, if not also part of a tag-filter.

Example:

metricfarmer --metrics my_metric,another_metric print

tags

Use -t or --tags to define a comma separated list of tags, which metrics must have to get measured.

A metric needs only to match one tag of the complete list to be taken into account for measurement.

Can be combined with a metric name filter.

Example:

metricfarmer --tags mf_examples,my_tag print

list

Use --list to get detailed information of loaded extension and configurations files.

You also get lists of available metrics, tags, sources and targets.

Can not be combined with other options.

Example:

metricfarmer --list

help

Use --help to get the default help message.

Example:

metricfarmer --help

4.3 Metrics

Metrics can be defined inside any .farm-file and must contain a unique name and a source configuration, which
describes how to measure the metric.

4.3. Metrics 11

metric-farmer Documentation

1 {
2 "metrics": {
3 "all_html_files": {
4 "source": {
5 "type": "html_file_count"
6 }
7 },
8 "doc_html_files": {
9 "source": {

10 "type": "html_file_count",
11 "path": "docs/"
12 }
13 }
14 }
15 }

Metrics must be defined in the metrics section, which stores a dictionary for specific metrics (line 2).

Each metric must be registered as element of this dictionary with an unique name (line 3 and 8). The name must be
unique in all used .farm-files.

4.3.1 Parameters

A metric can contain multiple parameters, which can be simple numbers or strings or list and complex dictionaries.

description

A description can be set to simplify the understanding and maintenance of your metrics for other users.

{
"metrics": {

"my_metric": {
"description": "An awesome metric to measure awesome stuff",
"source": {
"type": "static"

}
}

}
}

source

source is the most important section of a metric, as it defines what gets measured and how.

1 {
2 "metrics": {
3 "doc_html_files": {
4 "source": {
5 "type": "html_file_count",
6 "path": "docs/"
7 }
8 }
9 }

10 }

12 Chapter 4. Motivation

metric-farmer Documentation

source must be a dictionary and contain at least the parameter type (line 5).

type must be a string and reference an existing and loaded source type.

The used source type defines what other parameters can be set and are used during measurement. These parame-
ters differs a lot between the different source types. So take a look into the related source type documentation.

However, there aren’t any checks, if additional parameters are really supported by the referenced source type. So
you are free to set as many parameters as you like.

4.4 Sources

A source defines and configures the way a metric shall get measured.

It normally contains a set of parameters, which are shared between all metrics, which use this source. But each metric
can override specific parameters for its own measurement.

A metric must reference a source type defined in a .farm-file. And a source type needs to reference a
source class, which is provided by Metric-Farmer extensions and defined as a function in a Python file.

Page content

• Source types

– Predefined sources

– Own sources

• Source classes

– Predefined source classes

* mf.static

* mf.random

* mf.file_count

* mf.rest

– Own source classes

Context example

Image you are working for a company. This company is using Jira for their issue systems. Two different Jira installa-
tion exist: One for development tasks and one for product requirements.

The needed functions to access this Jira systems and measure metrics are the same, therefore only one source
class is needed, which must be provided by an Metric-Farmer extension.

But both systems are available on different URLs and use different credentials. So two source types are needed,
to store the different urls and credentials as parameters. These source types must be configured by the user in a
.farm-file.

The needed metrics can then measure the needed JIRA system by referencing the correct source type. The metrics
itself are only setting a filter parameter to get the needed data.

4.4. Sources 13

metric-farmer Documentation

4.4.1 Source types

Source types are referenced by metrics and add a use-case specific configuration to a normally not configured
source class.

Example: Referenced source in a metric definition

{
"metrics": {

"all_html_files": {
"source": {
"type": "html_file_count"

}
},
"doc_html_files": {

"source": {
"type": "html_file_count",
"path": "docs/"

}
}

}
}

Both metrics use the same source html_file_count, but the last metric also overrides the path parameter.

Example: Referenced source class in a source definition

{
"sources": {
"html_file_count": {

"class": "mf.file_count",
"description": "Counts all html files in my project",
"pattern": "**/*.html"

}
}

}

14 Chapter 4. Motivation

metric-farmer Documentation

This source references the source class mf.file_count. mf is the namespace of the extension (here Metric-Farmer)
and file_count is the source function to call.

Predefined sources

Metric-Farmer provides the predefined sources static, random and file_count. They are used mainly for
examples and simple use cases.

This is the content of the .farm-file, which defines the predefined sources:

{
"sources": {
"static": {

"class": "mf.static",
"description": "Sets a static value for a metric. Default is 0.",
"value": 0

},

"random": {
"class": "mf.random",
"description": "Sets a random number between 0 and 10.",
"min": 0,
"max": 10,
"digits": 2

},

"file_count": {
"class": "mf.file_count",
"description": "Counts all file in the current working directory."

},

"rest": {
"class": "mf.rest",
"description": "Makes a REST call against a given url."

}

}
}

Usage example:

{
"metrics" : {
"my_static_metric": {
"type": "static",
"value": 42

},
"my_random_metric": {
"type": "random",
"min": -50,
"max": 50,
"digits": 1

},
"my_file_count_metric": {

"type": "file_count",
"pattern": "**/*.farm"

}

(continues on next page)

4.4. Sources 15

metric-farmer Documentation

(continued from previous page)

}
}

Own sources

Sources get defined in the sources section of a .farm-file.

Example:

{
"metrics": {}
"sources": {

"my_source": {
"class": "mf.file_count",
"description": "Counts all c-files in all subfolders"
"pattern": "**/*.c"

}
}
"targets": {}

}

They must have a class parameter, which must contain a string to reference a source class from a Metric-
Farmer extension. Run metricfarmer --list to sell all available source classes.

They should also have a description parameter for documentation.

All other needed parameters are based on the selected source class. So please take a look into their documenta-
tion to find out which parameters are available and are mandatory.

Defined sources can be used and referenced in all other .farm-files.

4.4.2 Source classes

A source class is the link to a python function, which does the specific measurement work. They are provided
by Metric-Farmer extensions.

For all available source classes on your installation, please execute metricfarmer --list.

Predefined source classes

Metric-Farmer provides already some basic source classes to support some frequent use cases.

You can use them inside your own source type definitions

Each source class has its own set of needed parameters. See their documentation for a detailed picture.

Available target classes are:

• mf.static

• mf.random

• mf.file_count

• mf.rest

16 Chapter 4. Motivation

metric-farmer Documentation

mf.static

mf.static allows to get static values from sources.

Table 1: Parameters
Parameter Description Default Required
value A static value, which is used as result None No

mf.random

mf.random returns a random number as measurement result.

Use min and max parameters to define the range.

Table 2: Parameters
Parameter Description Default Required
min Minimum value, which is allowed as result 0.0 No
max Maximum value, which is allwoed as result 100.0 No
digits Allowed positions after decimal point 2 No
sleep Seconds to sleep/wait after measurement 0 No

mf.file_count

mf.file_count measure the amount of files inside a folder and its subfolders.

Use pattern to define what kind of files shall get measured.

Table 3: Parameters
Parameter Description Default Required
path Path to a folder, where Metric-Farmer shall count the

files
current working di-
rectory

No

pattern Unix style pattern, which defines what to count. See
docs for details.

**/* No

mf.rest

mf.rest allows to take a specific part of the answer of a REST call as measurement result.

4.4. Sources 17

https://docs.python.org/3/library/glob.html
https://en.wikipedia.org/wiki/Representational_state_transfer

metric-farmer Documentation

Table 4: Parameters
Parameter Description Default Required
url Complete url for the request. None Yes
user Username to use for Basic Authentication, if needed. None No
password Password/Token to use for Basic Authentication, if

needed.
None No

headers List of headers, which needs to be set for the call. {‘content-type’:
‘application/json’}

No

method HTTP method type. Supported are GET, POST and
PUT

GET No

payload Structured data, which will be send as json data. If
method=GET, data must be a flat dictionary.

None No

no_escape If True, payload will be added to url unescaped (only
GET).

False No

result_call Python statement, which gets evaluated and defines the
location of the data, which shall be taken as measure-
ment result

None No

result_call must be a Python based statement. This statement gets executed and has access to the request result
object under the name rest_result.

Imagine the service sends back the following data:

{
"name": "Frank",
"age": 32,
"friends": ["Peter", "Alex", "Sandra"]

}

If the age shall be taken as measurement result, the result_call must be rest_result['age'].

But even more complex measurements are possible. Lets say we need to measure the amount of friends. Then the
result_call should be len(rest_result['friends'])).

Example source type

{
"sources": {

"company_service": {
"class": "mf.rest",
"url": "https://my-company.com/service/api/rest",
"user": "my-name",
"password": "my_password",
"method": "POST",
"payload": {

"filter": "Issues = Open"
},

"result_call": "result['service_A']['total']"
}

}
}

Own source classes

If you wish to create your own source class please take a look into Extensions.

18 Chapter 4. Motivation

metric-farmer Documentation

4.5 Targets

Targets care about the final handling of metric results, after all measurements have been executed.

They are normally storing the results in a specific format on a specific system. E.g. locally as csv file or as entry on a
metric system like Prometheus.

There is no direct link between a metric and a target, as a metric does not need to know, how its result get handled.

Targets get selected by the user during the call of Metric-Farmer, e.g. metricfarmer print, or by using the
related Settings: targets_default or targets_always.

Page content

• Target types

– Predefined targets

– Own targets

• Target classes

– Predefined target classes

* mf.print

* mf.print_json

* mf.file_text

* mf.file_json

* mf.file_csv

* mf.db_sqlite

4.5.1 Target types

Predefined targets

Metric-Farmer provides the predefined targets print, print_json, file_text, file_json, file_csv and
db_sqlite.

This is the content of the .farm-file, which defines the predefined sources:

{
"targets": {
"print": {
"class": "mf.print",
"description": "Prints the measurement results on std.out"

},

"print_json": {
"class": "mf.print_json",
"description": "Prints the measurement results as json on std.out"

},

"file_text": {

(continues on next page)

4.5. Targets 19

https://prometheus.io

metric-farmer Documentation

(continued from previous page)

"class": "mf.file_text",
"description": "Stores metric results in a simple text file.",
"path": "metric_results.txt",
"override": true

},

"file_json": {
"class": "mf.file_json",
"description": "Stores metric results in a json file.",
"path": "metric_results.json",
"override": true

},

"file_csv": {
"class": "mf.file_csv",
"description": "Stores metric results in a csv file.",
"path": "metric_results.csv",
"override": false,
"delimiter": ","

},

"db_sqlite": {
"class": "mf.db_sqlite",
"description": "Stores metric results in a sqlite file.",
"path": "metric_results.db",
"table": "metrics"

}
}

}

Please take the above file content as reference about what defaults are set/used for each target. For instance the use file
path of csv output.

The targets can be simply used as argument in the Metric-Farmer call: metricfarmer db_sqlite.

Own targets

Targets can be defined in each .farm-file. After definition they can directly be selected and used by the user.

Example:

{
"targets": {
"file_csv": {

"class": "mf.file_csv",
"description": "Stores metric results in a csv file.",
"path": "metric_results.csv",
"override": false,
"delimiter": ","

}
}

}

Targets must have an unique name, which is used only once in all loaded .farm-files.

They also need to reference a target class of a loaded extension:

20 Chapter 4. Motivation

metric-farmer Documentation

"file_csv": {
"class": "mf.file_csv"

}

The target class defines what other parameters are needed. So please take a look into the related documentation
of target classes.

Run metricfarmer --list to get a list off all extension and their provided target classes.

4.5.2 Target classes

Predefined target classes

This list shows only target classes provided by Metric-Farmer. If you have installed some extensions, this list might
be much bigger. Please run metricfarmer --list to see what is really available on your system.

mf.print

Prints the result on the command line.

Does not support any parameters.

mf.print_json

Prints the result as json format on the command line.

Does not support any parameters.

mf.file_text

Writes the results to a text file.

Table 5: Parameters
Parameter Description Default Required
path File path to use metric_results.txt No
override If true, existing file gets replace, otherwise an error is

thrown
False No

mf.file_json

Writes the results to a json file.

Same out put as target print_json.

Table 6: Parameters
Parameter Description Default Required
path File path to use metric_results.txt No
override If true, existing file gets replace, otherwise an error is

thrown
False No

4.5. Targets 21

metric-farmer Documentation

mf.file_csv

Writes the results to a csv file.

If override is set to false and a csv file already exists, new results with get added.

Table 7: Parameters
Parameter Description Default Required
path File path to use metric_results.txt No
override If true, existing file gets replace, otherwise an error is

thrown
False No

delimiter Character to use as delimiter in csv file , No

mf.db_sqlite

Writes results to a local sqlite database file.

File path and table can be configured by the related parameters. But the needed table columns are fixed: metric,
timestamp, result

New data is always added and existing data is kept.

The database table may look like this after several executions of metricfarmer db_sqlite.

22 Chapter 4. Motivation

metric-farmer Documentation

You can use a sqlite database viewer like sqlitebrowser to analyze the data.

Table 8: Parameters
Parameter Description Default Required
path File path to use metric_results.db No
table Name of the table to use for string result data metrics No

4.6 Settings

Settings are used to configure the Metric-Farmer Application.

They can be part of any .farm-file:

{
"settings": {

"setting_A": true,
"setting_B": ["my_list"]

(continues on next page)

4.6. Settings 23

https://sqlitebrowser.org/

metric-farmer Documentation

(continued from previous page)

}
}

All available settings are defined by Metric-Farmer, as their usage is hardly coded in its source code.

Extensions have access to it, but should normally not use them. Instead their configuration should be stored in the
parameters of their sources and targets.

4.6.1 Available settings

• targets_default

• targets_always

targets_default

List of default targets, which shall be used, if the user is using Metric-Farmer without any target.

Has no effect, if the user provides own targets in its call.

Example:

{
"settings": {
"targets_default": ["print"]

}
}

Calling just metricfarmer will automatically execute the target print, if the above configuration is given.

targets_always

List of targets, which shall always get executed. No matter what the user has defined.

This targets will get executed first, then the user defined targets get executed.

Example:

{
"settings": {
"targets_always": ["print_json"]

}
}

If the user runs metricfarmer print with the above configuration, the two targets print_json and print
will get executed.

4.7 Extensions

Metric-Farmer can be easily extended by developers with own solutions for source and target types.

24 Chapter 4. Motivation

metric-farmer Documentation

The reasons for this are the measurement from not yet supported sources (e.g. a department specific Excel list) or the
storage of measurement results on not yet supported targets (e.g. a specific company metric system like Prometheus)

4.7.1 Concept

Metric-Farmer can be extend by using the entry-point mechanism of setuptools.

So a Metric-Farmer extension must be a valid Python package, which contains a setup.py file.

import os
from setuptools import setup

setup(
name='Your extension',

... More, but not for us important configurations
entry_points={

'metricfarmer': ['unimportant_name=your_package.your_modul:ExtensionClass']
}

)

During installation of this package, the entry_point content gets registered on the used Python environment.

For Metric-Farmer the entry-point entry must be a class, which inherits from metricfarmer.extensions.
MetricFarmerExtension and must have common variables, which define sources and target types.

Metric-Farmer creates an instance of this class during startup. From this point all defined sources and targets types of
the extension are available.

A single Python package can register as many Metric-Farmer extensions as it likes.

4.7.2 Step by step introductions

1. Create a new folder my_project

2. Create a setup.py file and a my_mf_extension.py inside the above folder.

3. For mf_my_extension.py use the following content.

from metricfarmer.extensions import MetricFarmerExtension

def my_source_a(**kwargs):
return 100

def my_target_a(metrics, **kwargs):
for metric in metrics.keys():

print metric

class MyExtension(MetricFarmerExtension):
def __init__(self, app):

self.app = app

self.name = "My Extension"
self.namespace = 'me'
self.author = 'Awesome guy'
self.description = 'Metric-Farmer extension...'

self.source_classes = {

(continues on next page)

4.7. Extensions 25

https://prometheus.io/
https://amir.rachum.com/blog/2017/07/28/python-entry-points/
https://setuptools.readthedocs.io/en/latest/

metric-farmer Documentation

(continued from previous page)

'my_source': my_source_a
}

self.target_classes = {
'my_target': my_target_a

}

4. Then register this class inside your setup.py file:

import os
from setuptools import setup, find_packages

setup(
name='My extension project',
version='0.0.1',
license='MIT',
author='Me',
author_email='me@me.com',
description='Collects and stores metrics for my project.',
platforms='any',
packages=find_packages(),
install_requires=['metricfarmer'],
entry_points={

'metricfarmer': ['my_extension=my_project.mf_my_extension:MyExtension']
}

)

5. After that you need to install your package, so that Python is aware of the new entry_point entry:

pip install -e .

6. Finally you should be able to address your source class with me.my_source and the target class with me.
my_target in the related class parameters of source/target type definitions.

4.7.3 Example

Take a look into the source code of Metric Farmer, as it is using the entry-point mechanism to register all available
sources and targets.

Visit https://github.com/useblocks/metricfarmer/tree/master/metricfarmer/extensions to get an overview about all fold-
ers and files.

The most important stuff is happening in file mf_extension.py. There the needed class gets defined.

This class is then used in the setup.py file as value for the metricfarmer entry-point.

4.8 Helpers

Helpers are little functions or definitions, which bring some helpful functions into the json-format of the .farm-files

All helpers are defined and configured as a string value and start with :MF_ + helper name.

Current helpers are:

26 Chapter 4. Motivation

https://github.com/useblocks/metricfarmer/tree/master/metricfarmer/extensions
https://github.com/useblocks/metricfarmer/blob/master/metricfarmer/extensions/mf/mf_extension.py
https://github.com/useblocks/metricfarmer/blob/master/setup.py

metric-farmer Documentation

• MF_REPLACE

• MF_ENV

4.8.1 MF_REPLACE

MF_REPLACE replaces the value, where it is defined, with a value taken from another parameter. Short example:
:MF_REPLACE:my_name: will search for my_name in the source definition of the current metric.

This helper is mainly used in source definitions, where single values need to be replaced by values from the metric
definition.

Example use case

Imagine you need to perform a REST call on a webservice and the webservice needs a complex payload. Most parts
of the payload are the same for all calls, but 1 option is specific for each metric.

In the below example we want to measure the amount of tickets in a ticket-system called Jira. Most important param-
eter is the jql-parameter (search string), which differs for each metric. But the rest of the needed configuration: data
to get, amount of data to get, . . . needs to be the same for each metric.

So instead a letting each metric definition contain the whole complex payload, it shall only define the jql. The complex
payload is only defined once in the source definition and the nested jql-parameter gets replaced by the jql-data from
the metric definition.

1 {
2 "metrics": {
3 "open_issues": {
4 "description": "Measure open jira issues",
5 "source": {
6 "type": "jira",
7 "jql": "status = Open"
8 }
9 },

10 "closed_issues": {
11 "description": "Measure closed jira issues",
12 "source": {
13 "type": "jira",
14 "jql": "status in ('Closed','Done')"
15 }
16 },
17 },
18

19 "sources": {
20 "jira": {
21 "class": "mf.rest",
22 "url": "https://my_jira.com",
23 "payload": {
24 "fields": [
25 "status"
26],
27 "maxResults": 1,
28 "jql": ":MF_REPLACE:jql"
29 },
30 }
31 }
32 }

4.8. Helpers 27

https://www.atlassian.com/software/jira

metric-farmer Documentation

4.8.2 MF_ENV

MF_ENV replaces the value, where it is defined, with a value defined by a named environment variable.

Example: :MF_ENV:my_password will look for a environment variable called my_password and takes its con-
tent as value.

If the variable is not found, the string will not get replaced.

This mechanism is useful to prevent the storage of credentials inside .farm-files, which may be stored on public
repositories.

1 {
2 "metrics": {
3 "open_issues": {
4 "description": "Measure open jira issues",
5 "source": {
6 "type": "jira",
7 "jql": "status = Open"
8 }
9 },

10 },
11

12 "sources": {
13 "jira": {
14 "class": "mf.rest",
15 "url": "https://my_jira.com",
16 "user": ":MF_ENV:JIRA_USER",
17 "password": ":MF_ENV:JIRA_PASSWORD",
18 "payload": {
19 "fields": [
20 "status"
21],
22 "maxResults": 1,
23 "jql": ":MF_REPLACE:jql"
24 },
25 }
26 }
27 }

4.9 Snippets

The following pages contain some information and mainly examples how to use and configure Metric-Farmer for
specific use cases.

Feel free to contribute to this list by creating PRs on our github project.

4.9.1 Get metrics from GitHub

The below example gets the amount of issues from GitHub.

For the GitHub api v3 please set "no_escape": true so that the filter string does not get escaped and is used
as it is in the GET call against GitHub.

The used filter itself is using a not existing github account for the assignee field. So the result should always be 0.

GitHub API documentation: https://developer.github.com/v3/search/

28 Chapter 4. Motivation

https://github.com
https://developer.github.com/v3/search/

metric-farmer Documentation

{
"metrics": {
"github_issues": {

"source": {
"type": "rest_github_v3",
"filter": "repo:useblocks/metricfarmer+type:issue+state:open+assignee:invalid"

}
}

},

"sources": {
"rest_github_v3": {

"class": "mf.rest",
"url": "https://api.github.com/search/issues",
"method": "GET",
"payload": {
"q": ":MF_REPLACE:filter"

},
"no_escape": true,
"result_call": "result['total_count']"

}
},

"targets": {
"print": {

"class": "mf.print"
}

}
}

4.9.2 Get metrics from JIRA

The below example gets issues for an empty jql of a cloud-based JIRA system.

Empty jql string means that all issues are taken as result.

As no user/password are provided and this JIRA system as no free-accessible projects, the result should be 0.

Hint: You may need to create a API-token for JIRA-cloud, because using your password in JIRA-cloud is not
allowed. In this case, simply use the token for the password field.

See JIRA api token docs.

{
"metrics": {
"jira_issues": {

"source": {
"type": "rest_jira",
"jql": ""

}
}

},

"sources": {

(continues on next page)

4.9. Snippets 29

https://confluence.atlassian.com/cloud/api-tokens-938839638.html

metric-farmer Documentation

(continued from previous page)

"rest_jira": {
"class": "mf.rest",
"url": "https://useblocks.atlassian.net/rest/api/3/search",
"method": "POST",
"payload": {
"jql": ":MF_REPLACE:jql",
"maxResults": 1,
"fields": ["summary"],
"startAt": 0

},
"result_call": "result['total']"

}
},

"targets": {
"print": {

"class": "mf.print"
}

}
}

4.9.3 Secure credentials

Nearly all web-services need valid credentials for authentication.

Instead of storing this security related information inside .farm -files, you should store them on local Environment
variables , which are normally not available for other users.

Use the helper function MF_ENV to get this data into your configuration during runtime of Metric-Farmer.

1 {
2 "metrics": {
3 "open_issues": {
4 "description": "Measure open jira issues",
5 "source": {
6 "type": "jira",
7 "jql": "status = Open"
8 }
9 },

10 },
11

12 "sources": {
13 "jira": {
14 "class": "mf.rest",
15 "url": "https://my_jira.com",
16 "user": ":MF_ENV:JIRA_USER",
17 "password": ":MF_ENV:JIRA_PASSWORD",
18 "payload": {
19 "fields": [
20 "status"
21],
22 "maxResults": 1,
23 "jql": ":MF_REPLACE:jql"
24 },
25 }

(continues on next page)

30 Chapter 4. Motivation

https://en.wikipedia.org/wiki/Environment_variable
https://en.wikipedia.org/wiki/Environment_variable

metric-farmer Documentation

(continued from previous page)

26 }
27 }

4.10 Changelog

4.10.1 0.2.0

• Starting changelog

• Diffs to 0.0.1: helper function, rest support, better documentation.

4.10. Changelog 31

	Features
	Workflow
	Quick start
	Installation
	First measurements
	Playing with targets
	Knowing what is possible
	Own metrics

	Motivation
	Installation
	Cli
	Metrics
	Sources
	Targets
	Settings
	Extensions
	Helpers
	Snippets
	Changelog

